Как округляется 5 после запятой

Программа Microsoft Excel: округление чисел

Как округляется 5 после запятой

Программа Microsoft Excel работает, в том числе, и с числовыми данными. При выполнении деления или работе с дробными числами, программа производит округление.

Это связано, прежде всего, с тем, что абсолютно точные дробные числа редко когда бывают нужны, но оперировать громоздким выражением с несколькими знаками после запятой не очень удобно. Кроме того, существуют числа, которые в принципе точно не округляются.

Но, в то же время, недостаточно точное округление может привести к грубым ошибкам в ситуациях, где требуется именно точность. К счастью, в программе Microsoft Excel имеется возможность самим пользователям устанавливать, как будут округляться числа.

Скачать последнюю версию Excel

Хранение чисел в памяти Excel

Все числа, с которыми работает программа Microsoft Excel, делятся на точные и приближенные. В памяти хранятся числа до 15 разряда, а отображаются до того разряда, который укажет сам пользователь. Но, при этом, все расчеты выполняются согласно хранимых в памяти, а не отображаемых на мониторе данным.

С помощью операции округления, Microsoft Excel отбрасывает некоторое количество знаков после запятой. В Excel применяется общепринятый способ округления, когда число меньше 5 округляется в меньшую сторону, а больше или равно 5 – в большую сторону.

Округление с помощью кнопок на ленте

Самым простым способом изменить округление числа — это выделить ячейку или группу ячеек, и находясь во вкладке «», нажать на ленте на кнопку «Увеличить разрядность» или «Уменьшить разрядность». Обе кнопки располагаются в блоке инструментов «Число». При этом, будет округляться только отображаемое число, но для вычислений, при необходимости будут задействованы до 15 разрядов чисел.

При нажатии на кнопку «Увеличить разрядность», количество внесенных знаков после запятой увеличивается на один.

При нажатии на кнопку «Уменьшить разрядность» количество цифр после запятой уменьшается на одну.

Округление через формат ячеек

Также можно выставить округление с помощью настроек формата ячеек. Для этого, нужно выделить диапазон ячеек на листе, кликнуть правой кнопкой мыши, и в появившемся меню выбрать пункт «Формат ячеек».

В открывшемся окне настроек формата ячеек нужно перейти во вкладку «Число». Если формат данных указан не числовой, то нужно выбрать именно числовой формат, иначе вы не сможете регулировать округление. В центральной части окна около надписи «Число десятичных знаков» просто указываем цифрой то число знаков, которое желаем видеть при округлении. После этого, выполняем клик по кнопке «OK».

Установка точности расчетов

Если в предыдущих случаях, устанавливаемые параметры влияли только на внешнее отображения данных, а при расчетах использовались более точные показатели (до 15 знака), то сейчас мы расскажем, как изменить саму точность расчетов.

Для этого, переходим во вкладку «Файл». Далее, перемещаемся в раздел «Параметры».

Открывается окно параметров Excel. В этом окне переходим в подраздел «Дополнительно». Ищем блок настроек под названием «При пересчете этой книги». Настройки в данном бока применяются ни к одному листу, а ко всей книги в целом, то есть ко всему файлу. Ставим галочку напротив параметра «Задать точность как на экране». Жмем на кнопку «OK», расположенную в нижнем левом углу окна.

Теперь при расчете данных будет учитываться отображаемая величина числа на экране, а не та, которая хранится в памяти Excel. Настройку же отображаемого числа можно провести любым из двух способов, о которых мы говорили выше.

Применение функций

Если же вы хотите изменить величину округления при расчете относительно одной или нескольких ячеек, но не хотите понижать точность расчетов в целом для документа, то в этом случае, лучше всего воспользоваться возможностями, которые предоставляет функция «ОКРУГЛ», и различные её вариации, а также некоторые другие функции.

Среди основных функций, которые регулируют округление, следует выделить такие:

  • ОКРУГЛ – округляет до указанного числа десятичных знаков, согласно общепринятым правилам округления;
  • ОКРУГЛВВЕРХ – округляет до ближайшего числа вверх по модулю;
  • ОКРУГЛВНИЗ – округляет до ближайшего числа вниз по модулю;
  • ОКРУГЛТ – округляет число с заданной точностью;
  • ОКРВВЕРХ – округляет число с заданной точность вверх по модулю;
  • ОКРВНИЗ – округляет число вниз по модулю с заданной точностью;
  • ОТБР – округляет данные до целого числа;
  • ЧЕТН – округляет данные до ближайшего четного числа;
  • НЕЧЕТН – округляет данные до ближайшего нечетного числа.

Для функций ОКРУГЛ, ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ следующий формат ввода: «Наименование функции (число;число_разрядов). То есть, если вы, например, хотите округлить число 2,56896 до трех разрядов, то применяете функцию ОКРУГЛ(2,56896;3). На выходе получается число 2,569.

Для функций ОКРУГЛТ, ОКРВВЕРХ и ОКРВНИЗ применяется такая формула округления: «Наименование функции(число;точность)». Например, чтобы округлить число 11 до ближайшего числа кратного 2, вводим функцию ОКРУГЛТ(11;2). На выходе получается число 12.

Функции ОТБР, ЧЕТН и НЕЧЕТ используют следующий формат: «Наименование функции(число)». Для того, чтобы округлить число 17 до ближайшего четного применяем функцию ЧЕТН(17). Получаем число 18.

Функцию можно вводить, как в ячейку, так и в строку функций, предварительно выделив ту ячейку, в которой она будет находиться. Перед каждой функцией нужно ставить знак «=».

Существует и несколько другой способ введения функций округления. Его особенно удобно использовать, когда есть таблица со значениями, которые нужно преобразовать в округленные числа в отдельном столбике.

Для этого, переходим во вкладку «Формулы». Кликаем по копке «Математические». Далее, в открывшемся списке выбираем нужную функцию, например ОКРУГЛ.

После этого, открывается окно аргументов функции. В поле «Число» можно ввести число вручную, но если мы хотим автоматически округлить данные всей таблицы, тогда кликаем по кнопке справа от окна введения данных.

Окно аргументов функции сворачивается. Теперь нужно кликнуть по самой верхней ячейке столбца, данные которого мы собираемся округлить. После того, как значение занесено в окно, кликаем по кнопке справа от этого значения.

Опять открывается окно аргументов функции. В поле «Число разрядов» записываем разрядность, до которой нам нужно сокращать дроби. После этого, жмем на кнопку «OK».

Как видим, число округлилось. Для того, чтобы таким же образом округлить и все другие данные нужного столбца, наводим курсор на нижний правый угол ячейки с округленным значением, жмем на левую кнопку мыши, и протягиваем её вниз до конца таблицы.

После этого, все значения в нужном столбце будут округлены.

Как видим, существуют два основных способа округлить видимое отображение числа: с помощью кнопки на ленте, и путем изменения параметров формата ячеек. Кроме того, можно изменить и округление реально рассчитываемых данных.

Это также можно сделать двумя способами: изменением настроек книги в целом, или путем применения специальных функций. Выбор конкретного способа зависит от того, собираетесь ли вы применять подобный вид округления для всех данных в файле, или только для определенного диапазона ячеек.

Мы рады, что смогли помочь Вам в решении проблемы.
Опишите, что у вас не получилось.Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

Источник: https://lumpics.ru/rounding-numbers-in-excel/

Как округляется 5 после запятой

Как округляется 5 после запятой

При округлении всех таких строк по правилам математического округления «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.

Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений.

Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина из них окажется слева, а половина — справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.

Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина — в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.

  • Округление в случайную сторону требует для каждой округляемой строки генерировать случайное число.

Округление 5 после запятой

Важное замечание: если один операндов при умножении или делитель при делении является по смыслу целым числом (то есть не результатом измерений непрерывной физической величины с точностью до целых единиц, а, например, количеством или просто целой константой), то количество значащих цифр в нём на точность результата операции не влияет, и оставляемое число цифр определяется только вторым операндом. Например, кинетическая энергия тела массой 0,325 кг, движущегося со скоростью 5,2 м/с, равна Дж — округляется до двух знаков (по количеству значащих цифр в значении скорости), а не до одного (делитель 2 в формуле), так как значение 2 по смыслу — целая константа формулы, она является абсолютно точной и не влияет на точность вычислений (формально такой операнд можно считать «измеренным с бесконечным числом значащих цифр»).

  • При вычислении значения функции требуется оценить значение модуля производной этой функции в окрестности точки вычисления. Если , то результат функции точен до того же десятичного разряда, что и аргумент.

При округлении натурального числа до какого-либо разряда надо воспользоваться правилами округления.

  1. Подчеркнуть цифру разряда, до которого надо округлить число.
  2. Отделить все цифры, стоящие справа этого разряда вертикальной чертой.
  3. Если справа от подчёркнутой цифры стоит цифра 0, 1, 2, 3 или 4 , то все цифры, которые отделены справа, заменяются нулями. Цифру разряда, до которой округляли, оставляем без изменений.
  4. Если справа от подчёркнутой цифры стоит цифра 5, 6, 7, 8 или 9 , то все цифры, которые отделены справа, заменяются нулями, а к цифре разряда, до которой округляли, прибавляется 1 .

Поясним на примере.

Округлим 57 861 до тысяч. Выполним первые два пункта из правил округления.

После подчёркнутой цифры стоит цифра 8 , значит к цифре разряда тысяч (у нас это 7 ) прибавим 1 , а все цифры, отделённые вертикальной чертой заменим нулями.

Теперь округлим 756 485 до сотен.

Округлим 364 до десятков.

3 6 |4 ≈ 360 — в разряде единиц стоит 4 , поэтому мы оставляем 6 в разряде десятков без изменений.

На числовой оси число 364 заключено между двумя «круглыми» числами 360 и 370 .

Правило округления чисел

В приближенных вычислениях зачастую приходится округлять некоторые числа, как приближенные, так и точные, то есть убирать одну или несколько конечных цифр. Для того чтобы обеспечить наибольшую близость отдельного округленного числа к округляемому числу, следует соблюдать некоторые правила.

Если первая из отделяемых цифр больше, чем число 5 , то последняя из оставляемых цифр усиливается, иначе говоря, увеличивается на единицу.

Внимание

Усиление так же предполагается и тогда, когда первая из убираемых цифр равна 5 , а за ней имеется одна или некоторое количество значащих цифр.

Число 25,863 округлённо записывается как – 25,9 . В данном случае цифра 8 будет усилена до 9 , так как первая отсекаемая цифра 6 , больше чем 5 .

Число 45,254 округлённо записывается как – 45,3 .
Здесь цифра 2 будет усилена до 3 , так как первая отсекаемая цифра равна 5 , а за ней следует значащая цифра 1 .

В случае если первая из отсекаемых цифр меньше чем 5 , то усиления не производится.

Число 46,48 округлённо записывается как – 46 . Число 46 наиболее близко к округляемому числу, чем 47 .

Если отсекается цифра 5 , а за ней не имеется значащих цифр, то округление выполняется на ближайшее четное число, другими словами, последняя оставляемая цифра остаётся неизменной, если она четная, и усиливается в случае, если она нечетная.

Число 0,0465 округлённо записывается как – 0,046 .

  • ВажноСлучайное округление — округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
  • Чередующееся округление — округление происходит в меньшую или большую сторону поочерёдно.

Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.

Математическое округление просто формально соответствует общему правилу округления (см.
выше). Его недостатком является то, что при округлении большого числа значений, которые далее будут обрабатываться совместно, может происходить накопление ошибки округления.

Типичный пример: округление до целых рублей денежных сумм, выражаемых в рублях и копейках.


В реестре из 10 000 строк (если считать копеечную часть каждой суммы случайным числом с равномерным распределением, что обычно вполне допустимо) окажется в среднем около 100 строк с суммами, содержащими в части копеек значение 50.

Здесь 2,6 → 2, −2,6 → −3. Погрешность округления — в пределах −1 последнего сохраняемого разряда.

  • Округление к большему по модулю (округление к бесконечности, округление от нуля) — относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу. Погрешность округления составляет +1 последнего разряда для положительных и −1 последнего разряда для отрицательных чисел.

Варианты округления 0,5 к ближайшему целому[править | править код]

Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю.

Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» — в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:

  • Математическое округление — округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
  • Банковское округление (англ.

Поэтому оцениваем задачу и, если ситуация позволяет, то лучше использовать значение 8,5.

! Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства

Приближение до десятых

Как округлить до десятых, до сотых, до тысячных? Операция осуществляется по таким же правилам, как и до целых. Основная задача – правильно определить округляемый разряд и знак, который следует за ним.

К примеру, дробь 6,7864 при доведении:

  • до десятых становится равной 6,8;
  • до сотых – 6,79;
  • если округлить до тысячных, то получают 6,786.

Математика — учимся округлять числа

Правила округления чисел до десятых

Вывод

Приоритетов умения выполнять такие математические операции можно привести ещё достаточно много.

Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления.

Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений.

На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше.

При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м.

При наличии цифры, меньшей, чем «5», последняя сохраняемая цифра остается неизменной. Такие правила округления чисел применяются независимо от того, до целого числа или до десятков, сотых и т.д.
необходимо округлить число.

В большинстве случаев, при необходимости округления числа, в котором последняя цифра «5», этот процесс выполняется неправильно. Но существует еще и такое правило округления, которое касается именно таких случаев.

Рассмотрим на примере. Необходимо округлить число 3,25 до десятых. Применяя правила округления чисел, получим результат 3,2.

То есть, если после «пяти» нет цифры или стоит ноль, то последняя цифра остается неизменной, но только при условии, что она является четной – в нашем случае «2» — это четная цифра. Если бы нам необходимо было выполнить округление 3,35, то результатом бы стало число 3,4.

Поскольку, в соответствии с правилами округления, при наличии нечетной цифры перед «5», которую необходимо убрать, нечетная цифра увеличивается на 1. Но только при условии, что после «5» нет значащих цифр.

Во многих случаях, могут применяться упрощенные правила, согласно которым, при наличии за последней сохраняемой цифрой значений цифр от 0 до 4, сохраняемая цифра не изменяется.

При наличии других цифр, последняя цифра увеличивается на 1.

elhow.ru

5.5.7

При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м — здесь надёжными являются только десятки, до них и следует округлять).

  • Промежуточные значения округляются с одной «запасной» цифрой.
  • При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
  • При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют множители или делимое и делитель. Например, если тело при равномерном движении прошло дистанцию 2,5⋅103 метров за 635 секунд, то при вычислении скорости результат должен быть округлён до 3,9 м/с, поскольку одно из чисел (расстояние) известно лишь с точностью до двух значащих цифр.

Округление чисел

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения .

Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Примеры.

Округлить до целых:

1) 12,5; 2) 28,49; 3) 0,672; 4) 547,96; 5) 3,71.

Решение. Подчеркиваем цифру, стоящую в разряде единиц (целых) и смотрим на цифру, стоящую за ней. Если это цифра 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения, а все цифры после нее отбрасываем.

Источник: http://osago24-spb.ru/kak-okruglyaetsya-5-posle-zapyatoj

Как округлить число до целого

Применяя правило округления чисел, рассмотрим на конкретных примерах, как округлить число до целого.

Правило округления числа до целого

Чтобы округлить число до целого (или округлить число до единиц), надо отбросить запятую и все числа, стоящие после запятой.

Если первая из отброшенных цифр 0, 1, 2, 3 или 4, то число не изменится.

Если первая из отброшенных цифр 5, 6, 7, 8 или 9, предыдущую цифру нужно увеличить на единицу.

Округлить число до целого:

Чтобы округлить число до целого, отбрасываем запятую и все стоящие после нее числа.

Внимание

В противном случае результат содержит меньше точных десятичных разрядов на величину , округлённую до целого в большую сторону.

Несмотря на нестрогость, приведённые правила достаточно хорошо работают на практике, в частности, из-за достаточно высокой вероятности взаимопогашения ошибок, которая при точном учёте погрешностей обычно не учитывается.

Ошибки[править | править код]

Довольно часто встречаются злоупотребления некруглыми числами. Например:

  • Записывают числа, имеющие невысокую точность, в неокруглённом виде.

В статистике: если 4 человека из 17 ответили «да», то пишут «23,5 %» (в то время как верно «24 %», так как число значащих цифр в исходных данных не более двух).

  • Пользователи стрелочных приборов иногда размышляют так: «стрелка остановилась между 5,5 и 6 ближе к 6, пусть будет 5,8» — такое рассуждение некорректно.
  • Этой процедуре люди, работающие в данной сфере, обучены хорошо. Но и в повседневной жизни процесс приведения значений к целому виду не редкость.
    Многие люди благополучно забыли, как округлять числа, сразу же после школьной скамьи. Напомним основные моменты этого действия.

    • Круглое число
    • Получение приближенных значений
    • Точные правила округления чисел
    • Приближение до целых
    • Приближение до десятых
    • Вывод

    Круглое число

    Перед тем как перейти к правилам округления значений, стоит разобраться, что представляет собой круглое число.

    Таким образом, следуя правилам округления чисел, необходимо знать, если цифры больше «5», то последняя цифра, которую необходимо сохранить, будет увеличена на 1. При наличии цифры, меньшей, чем «5», последняя сохраняемая цифра остается неизменной.

    Такие правила округления чисел применяются независимо от того, до целого числа или до десятков, сотых и т.д. необходимо округлить число.

    В большинстве случаев, при необходимости округления числа, в котором последняя цифра «5», этот процесс выполняется неправильно. Но существует еще и такое правило округления, которое касается именно таких случаев.

    Рассмотрим на примере. Необходимо округлить число 3,25 до десятых. Применяя правила округления чисел, получим результат 3,2.

    Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина из них окажется слева, а половина — справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся.

    Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее.
    Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам.

    Для таких случаев лучше работают два следующих метода.

    Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина — в другую.

    Тригуб (гл. 1), Ю. Г. Гордиенко (гл. 2) и И. В. Красикова (разд. 2.5 и 2.6). — 3. — Москва: Вильямс, 2002. — Т. 1. — 720 с. — ISBN 5-8459-0080-8.

    • ↑ A’HEARN, B., J. BATEN AND D. CRAYEN (2009). “Quantifying Quantitative Literacy: Age Heaping and the History of Human Capital”, Journal of Economic History 69,783-808.
    • ↑ В. ВажноМ. Заварыкин, В. Г. Житомирский, М. П. Лапчик. Техника вычислений и алгоритмизация: Вводный курс: Учебное пособие для студентов педагогических институтов по физико-математическим специальностям. — М: Просвещение, 1987. 160 с.: ил.
    • ↑ цит. по В. Гильде, З. Альтрихтер. «С микрокалькулятором в руках».

    Источник: http://advokat-martov.ru/kak-okruglyaetsya-5-posle-zapyatoj

    Округление чисел в PHP

    Как округляется 5 после запятой

    Igor Kirsanov

    Округление чисел проводится согласно определенным способам округления.

    Например, существует математическое округление, округление в большую сторону, меньшую сторону, до десятков, банковское …, способов как округлить числов достаточно много.

    Основные функции окргуления до целого числа встроенные в PHP

    • ceil – округляет в большую сторону, тип float.
    • floor – в меньшую сторону, тип mixed.

    Пример

    // 4 тестовых значения $value1 = 1.7; $value2 = 1.4; $value3 = 12345678912345.999999999999999999999999999999999; $value4 = 12345678912345.99; // Округление в большую сторону echo ceil($value1); // 2 echo ceil($value2); // 2 echo ceil($value3); // 12345678912346 echo ceil($value4); // 12345678912346 // Округление в меньшую сторону echo floor($value1); // 1 echo floor($value2); // 1 echo floor($value3); // 12345678912346 – обратить внимание echo floor($value4); // 12345678912345

    Для обычных данных из прайс-листа данные функции вполне подходят, но для анализа статистических данных лучше использовать специализированные решения.

    Математическое округление до целого

    Функция round предназначена для округления дробных чисел, типа float.

    По умолчанию округление производится до целого числа, согласно математическим правилам округления чисел.

    echo round($value1); // 2 echo round($value2); // 1 echo round($value3); // 12345678912346 echo round($value4); // 12345678912346

    Округление дробного числа до x знаков после запятой

    Вторым параметром функции round является количество знаков после запятой, которое может принимать отрицательные значения.

    // данные для проверки $value1 = 1.7; $value2 = 1.74; $value3 = 12345.999999999999999999999999999999999; $value4 = 12345.88; echo round($value1, 2); // 1.7 – нули не добавляются 1.70 echo round($value2, 1); // 1.7 – округление по умолчанию математическое echo round($value3, 5); // 12346 – выход за допустимый диапазон, округление до целого echo round($value4, -1); // 12350 – округление до десятков echo round($value4, -2); // 12300 – округление до сотен echo round($value4, -4); // 10000 – округление до десяти тысяч echo round($value4, -5); // 0 – значение не определено, вышли за диапазон

    Задание способа округления функции round

    Третий параметр (константа) функции round задает способ округления

    PHP_ROUND_HALF_UP – Округляет val в большую сторону от нуля до precision десятичных знаков, если следующий знак находится посередине. Т.е. округляет 1.5 в 2 и -1.5 в -2.

    PHP_ROUND_HALF_DOWN – Округляет val в меньшую сторону к нулю до precision десятичных знаков, если следующий знак находится посередине. Т.е. округляет 1.5 в 1 и -1.5 в -1.

    PHP_ROUND_HALF_EVEN – Округляет val до precision десятичных знаков в сторону ближайшего четного знака.

    PHP_ROUND_HALF_ODD – Округляет val до precision десятичных знаков в сторону ближайшего нечетного знака.

    Банковское округление, до ближайшего четного числа

    Банковское округление (англ. banker's rounding) – округление к ближайшему чётному, то есть 2,5 → 2, 3,5 → 4

    Используя константу PHP_ROUND_HALF_EVEN функции round и округление до целого, напишем способ банковского округления числа на php.

    $value1 = 2.5; $value2 = 3.5; echo round($value1, 0, PHP_ROUND_HALF_EVEN); // 2 echo round($value2, 0, PHP_ROUND_HALF_EVEN); // 4

    Округление целого числа кратного 10, 100

    $value1 = 104; $value2 = 111.

    5; $value3 = 144; $value4 = 1; // Используя функцию round, не всегда ожидаемое поведение // Лучше использовать разделить и умножить на 10, как в функции ceil ниже // до 10 echo round($value1, -1); // 100 echo round($value2, -1); // 110 echo round($value3, -1); // 140 echo round($value4, -1); // 0 – выход за диапазон // до 100 echo round($value1, -2); // 100 echo round($value2, -2); // 110 echo round($value3, -2); // 140 echo round($value4, -2); // 0 – вместо округления, 0 // Функция ceil выдает ожидаемый результат // до 10 echo ceil($value1/10) * 10; // 110 echo ceil($value2/10) * 10; // 120 echo ceil($value3/10) * 10; // 150 echo ceil($value4/10) * 10; // 10 // до 100 echo ceil($value1/100) * 100; // 200 echo ceil($value2/100) * 100; // 200 echo ceil($value3/100) * 100; // 200 echo ceil($value4/100) * 100; // 100

    Округление до 5

    Пример округления до 5 приведен для функции ceil, для round и floor – аналогично.

    $value1 = 104; $value2 = 105; $value3 = 150; $value4 = 200; echo ceil($value1/5) * 5; // 105 echo ceil($value2/5) * 5; // 105 echo ceil($value3/5) * 5; // 150 echo ceil($value4/5) * 5; // 200

    Данный пример округления кратного 5 встречается наиболее часто, так же существуют варианты когда необходимо не включать само число

    echo ceil(($value2+5/2)/5)*5; // 110 вместо 105

    или нужно окргулить до ближайшего целого числа, кратного 5

    // значения $n = 50.25; $x = 5; // округление до ближайшего числа кратного 5 echo (round($n)%$x === 0) ? round($n) : round(($n+$x/2)/$x)*$x; // 50 // округление вначале до целого, после до ближайшего кратного 5 echo (ceil($n)%$x === 0) ? ceil($n) : round(($n+$x/2)/$x)*$x; // 55

    Источник: http://xn--80afqpaigicolm.xn--p1ai/php/okruglenie-chisel-v-php/

    Как округлять числа правильно и где в жизни это умение может стать полезным

    Как округляется 5 после запятой

    Многие люди интересуются, как округлять числа. Эта необходимость часто возникает у людей, которые свою жизнь связывают с бухгалтерией или другими видами деятельности, где требуются расчеты. Округление может производиться до целых, десятых и так далее. И необходимо знать, как это делать правильно, чтобы расчеты были более менее точными.

    А что такое вообще круглое число? Это то, которое заканчивается на 0 (по большей части). В обыденной жизни умение округлять числа значительно облегчает походы по магазинам.

    Стоя у кассы, можно приблизительно прикинуть общую стоимость покупок, сравнить, сколько стоит килограмм одноименного товара в различных по весу пакетах.

    С числами, приведенными к удобной форме, легче производить устные расчеты, не прибегая к помощи калькулятора.

    Зачем округляются числа?

    Любые цифры человек склонен округлять в тех случаях, когда нужно выполнять более упрощенные операции. Например, дыня весит 3,150 килограммов.

    Когда человек будет рассказывать своим знакомым о том, сколько граммов имеет южный плод, он может прослыть не очень интересным собеседником.

    Значительно лаконичнее звучат фразы типа “Вот я купил трехкилограмовую дыню” без вникания во всякие ненужные детали.

    Интересно, что даже в науке нет необходимости всегда иметь дело с максимально точными числами. А если речь идет о периодических бесконечных дробях, которые имеют вид 3,33333333…3, то это становится невозможным. Поэтому самым логичным вариантом будет обычное округление их. Как правило, результат после этого искажается незначительно. Итак, как округлять числа?

    Несколько важных правил при округлении чисел

    Итак, если вы захотели округлить число, важно понимать основные принципы округления? Это операция изменения десятичной дроби, направленная на уменьшение количества знаков после запятой. Чтобы осуществлять данное действие, необходимо знать несколько важных правил:

    1. Если число нужного разряда находится в пределах 5-9, округление осуществляется в большую сторону.
    2. Если число нужного разряда находится в пределах 1-4, округление производится в меньшую сторону.

    Например, у нас есть число 59. Нам его нужно округлить. Чтобы это сделать, надо взять число 9 и добавить к нему единицу, чтобы получилось 60. Вот и ответ на вопрос, как округлять числа. А теперь рассмотрим частные случаи. Собственно, мы разобрались, как округлить число до десятков с помощью этого примера. Теперь осталось всего лишь использовать эти знания на практике.

    Очень часто случается так, что имеется необходимость округлить, например, число 5,9. Данная процедура не составляет большого труда. Нужно для начала опустить запятую, и перед нашим взором предстает при округлении уже знакомое нам число 60. А теперь ставим запятую на место, и получаем 6,0. А поскольку нули в десятичных дробях, как правило, опускаются, то получаем в итоге цифру 6.

    Аналогичную операцию можно производить и с более сложными числами. Например, как округлять числа типа 5,49 до целых? Здесь все зависит от того, какие цели вы поставите перед собой.

    Вообще, по правилам математики, 5,49 – это все-таки не 5,5. Поэтому округлить его в большую сторону нельзя. Но можно его округлить до 5,5, после чего уже законным становится округление до 6.

    Но такая уловка не всегда срабатывает, так что нужно быть предельно осторожным.

    Как правильно округлять числа после запятой до десятых?

    В принципе, выше уже был рассмотрен пример правильного округления числа до десятых, поэтому сейчас важно отобразить только основной принип. По сути, все происходит приблизительно таким же образом.

    Если цифра, которая находится на второй позиции после запятой, находится в пределах 5-9, то она вообще убирается, а стоящая перед ней цифра увеличивается на один.

    Если же меньше 5, то данная цифра убирается, а предыдущая остается на своем месте.

    Например, при округлении числа 4,59 до 4,6 цифра “9” уходит, а к пятерке прибавляется единица. А вот при округлении 4,41 единица опускается, а четверка остается в незименном виде.

    Как используют маркетологи неумение массового потребителя округлять цифры?

    Оказывается, большая часть людей на свете не имеет привычки оценить реальную стоимость продукта, что активно эксплуатируют маркетологи. Все знают слоганы акций типа “Покупайте всего за 9,99”.

    Да, мы сознательно понимаем, что это уже по сути десять долларов. Тем не менее наш мозг устроен так, что воспринимает только первую цифру.

    Так что нехитрая операция приведения числа в удобный вид должно войти в привычку.

    Очень часто округление позволяет лучше оценить промежуточные успехи, выражающиеся в численной форме. Например, человек стал зарабатывать 550 долларов в месяц. Оптимист скажет, что это почти 600, пессимист – что это чуть больше 500. Вроде бы разница есть, но мозгу приятнее “видеть”, что объект достиг чего-то большего (или наоборот).

    Можно привести огромное количество примеров, когда умение округлять оказывается невероятно полезным. Важно проявлять изобретательность и по возможности на загружаться ненужной информацией. Тогда успех будет незамедлительным.

    Источник: https://FB.ru/article/221569/kak-okruglyat-chisla-pravilno-i-gde-v-jizni-eto-umenie-mojet-stat-poleznyim

    Юрист-Профи
    Добавить комментарий